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Introduction
Type 2 diabetes mellitus (T2DM) is a common non-
communicable disease, and its prevalence is increasing 
worldwide due to lifestyle changes. It represents 
approximately 95% of diabetes cases in the majority 
of populations. According to reported estimates,  the 
number of adult diabetics will rise from 422 to 624 million 
worldwide by 2040, 54% more than the estimated numbers 
in 2010.1 In addition, less than 1% of females and an even 
smaller number of males have the opportunity to achieve 
global objectives in preventing the increase in diabetes 
incidence by 2025.2 

Geographically, diabetes is spread differently around 
the world. According to reports, the highest prevalence 
of diabetes was observed in India, China, and the United 
States of America. The general pattern of diabetes in the 
world shows that the prevalence of this disease is higher 
in developing countries as well as low socio-cultural 
groups; thus, it is estimated that more than 75% of the 

total diabetics will be in developing countries by 2025.3

Based on the prediction of the World Health 
Organization, the prevalence of T2DM in Iran will be 
8.6% (5 125 000 patients) in 2025 and will reach 9.2 million 
diabetics in 2030.4

Many factors are associated with T2DM, which can be 
classified into non-modifiable and modifiable groups. 
Metabolic syndromes such as high levels of triglyceride 
(TG), cholesterol, high blood pressure (BP), abdominal 
obesity, low levels of high-density lipoprotein (HDL), and 
smoking are considered risk factors for high-risk or pre-
diabetic individuals.4 Hence, identifying subjects at risk 
of T2DM and predicting the associated risk factors are 
highly essential. 

Classical methods for determining risk factors applied 
in studies include Fisher’s linear discriminant analysis 
and logistic regression. However, these traditional models 
cannot perform well in many variables, high-dimensional 
data, nonlinear relationships, outliers, and missing data. 
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Abstract
Background and aims: Identifying subjects that are at risk of type 2 diabetes mellitus (T2DM) 
and predicting the associated risk factors are highly important. Thus, this study aimed to explore 
the risk factors and find the prediction model for T2DM using decision trees (DTs) and random 
forest (RF) models.
Methods: This cross-sectional study is a part of the Kharameh Cohort Study. Kharameh Cohort 
is a part of the Fars Cohort, which started in 2014 with 10 663 people aged 40–70. In this study, 
the risk factors of T2DM were explored using two data mining methods. Accuracy, sensitivity, 
specificity, and area under the receiver operating characteristic curve (AUC) were applied to 
evaluate the models. The data were statistically analyzed using R software.
Results: The DT modeling showed that age, triglycerides (TG), physical activity, systolic blood 
pressure, low-density lipoproteins (LDL), and body mass index (BMI) were the most associated 
factors in D2MT, while applying RF revealed that fasting blood sugar, cholesterol, creatinine, TG, 
gamma-glutamyl transferase physical activity, BMI, and LDL were the most effective on T2DM. 
The RF model was superior to the DT based on the applied criteria. Sensitivity, specificity, 
accuracy, and AUC for the RF were 73.4, 70.10, 73.5, and 79.1. These findings for the DT were 
63.8, 69.7, 62.8, and 66.8, respectively. 
Conclusion: Based on the inferences, a strong association was found between several risk factors 
and the risk of T2DM. Therefore, predictive analytics using the RF model can be applied to 
identify the risk factors of other chronic diseases. 
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These situations can be handled using data mining 
methods such as decision trees (DTs), random forests 
(RFs), neural networks, and support vector machines.5 
Numerous studies have consistently affirmed the superior 
accuracy and lower error rates of data mining methods 
compared to traditional classification models.6 Komi et al 
explored the early prediction of diabetes via five methods 
of data mining, and the artificial neural network had the 
highest accuracy.7

In another recent study, data mining algorithms for 
predicting diabetes were compared, and the results 
revealed that the DT had the best accuracy.8

The mechanism of data mining methods is to extract 
hidden factors and patterns from a large amount of 
data, and it is applied in medical studies to explore the 
associated risk factors of T2DM and other situations.9 
However, to the best of our knowledge, a relatively 
small number of researchers have utilized data mining 
to construct prediction models incorporating multiple 
risk factors. Accordingly, this study seeks to explore the 
risk factors and find the prediction model for T2DM in 
the population of Kharameh Cohort Study in the south 
of Iran using two data mining methods, DT and RF. 
Accuracy, sensitivity, and specificity have been applied to 
evaluate the models’ performance.

Materials and Methods
Study Design and Population
This analytical cross-sectional study is part of the 
Kharameh Cohort Study, a branch of Prospective 
Epidemiological Studies in Iran. The Persian Cohort 
Study is one of the most significant research projects of the 
region; its aims and design have been published before.10 
Kharameh is located in the south of Fars province in Iran, 
with a population of 61 580 people. Kharameh Cohort 
is a part of the Fars cohort, which was initiated in 2014 
with 10,663 individuals ages 40–70 years. The primary 
aim was to find the prevalence and risk factors of non-
communicable diseases. All of the Kharameh population 
was entered into the study through census.11

Initially, the participants completed a written consent 
form. Then, they received a standardized questionnaire 
that was used to gather information about their 
demographic characteristics, including age, gender, body 
mass index (BMI), marital status, level of education, place 
of residence, occupational status, social and economic 
status, and family history of chronic diseases. In addition, 
data on behavioral factors, such as smoking, alcohol 
consumption, hookah use, drug use, and physical activity, 
were obtained through interviews. For the laboratory tests, 
the participants were requested to fast for 12 hours before 
blood sampling. Further, their weight and height were 
measured using a Seca scale and a standard measuring 
tape, respectively. Furthermore, blood glucose, HDL, and 
cholesterol levels were estimated using the Mindray brand 
tool and Pars test kit.10

Exclusion Criteria
Unwillingness to participate in the study, mental disorders 
(intellectual disability), and total daily energy intake 
(kcal) out of mean ± 3SD were considered as overreport 
data and the exclusion criteria in this study.12 Finally, 
10 439 subjects (1587 DMT2 and 8852 non-diabetes) were 
included in our study.

Input Parameters
The parameters entered in our analysis are the ones that 
were gathered in the Kharameh Cohort Study, and their 
association was investigated in previous studies.13-15 They 
are listed as follows:
	• Demographic characteristics: Age, gender, marital 

status, education, and cigarette smoking habit;
 • Anthropometric data: BMI (BMI and its formula 

is: weight/height2), weight (kg), height (m2), waist 
circumference (w), hip circumference (h), and waist 
to hip ratio (w/h);

	• Glucose levels: Fasting blood sugar;
	• Kidney function: Specific gravity (SG), creatinine 

(Cr), and blood urea nitrogen;
	• Liver tests: Serum glutamic-oxaloacetic transaminase, 

alanine transaminase (ALT), alkaline phosphatase, 
and gamma-glutamyl transferase;

	• BP: Systolic and diastolic BP (SBP and DBP);
	• Lipid profile: Cholesterol, HDL, low-density 

lipoproteins (LDL), and TG;
	• Total energy (kcal);
	• Physical activity;
	• Family history of T2DM: First- and second-degree 

family history of T2DM (FHD1 and FHD2)
	• First-degree family history of hypertension (FHH1).

Diabetes
Blood samples were taken from the participants. DM was 
defined as fasting blood glucose ≥ 126 mg/dL, a 2-hour 
value in an oral glucose tolerance test ≥ 200 mg/dL, or 
taking antidiabetic medication.

Statistical Analysis
Two data mining methods were applied, including DTs 
and RFs. Each of them is briefly explained in the following 
paragraphs.

Decision Tree Method
DTs are a subset of supervised machine learning based 
on splitting the data relative to a specific parameter 
to explore a predictive model based on the features or 
classification of the subjects. Classification (categorical 
outcomes) and regression (continuous outcomes) trees 
are the two common types of DTs. A DT has two parts, 
including a node (root and internal nodes) and a leaf 
(end nodes or the target). In a DT, each node represents 
an attribute, each link or branch shows a decision, and 
each leaf demonstrates an outcome.16 A tree results from 
a successful data division based on one of the variables. 
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To form the trees, DT algorithms apply splitting criteria 
at the internal nodes to minimize the internal nodes’ 
impurity. The node impurity is an index for measuring 
the homogeneity of the class labels in each node and 
leaf. The node will be split if the impurity is reduced; 
otherwise, it will be presented as a leaf. If the impurity is 
reduced, two branches will be formed, and two new nodes 
will appear accordingly. The splitting criteria give a rate to 
each predictor variable. Therefore, those with the best rate 
will remain in the model.

The classification and regression tree is a tree algorithm 
variation that can deal with classification and regression 
issues.17 In this algorithm, nodes are divided into sub-
nodes according to the threshold of an attribute. The 
root node is considered the training set, and splitting is 
performed by considering the appropriate attribute and 
threshold value. This process stops when the maximum 
possible number of leaves is achieved. A common and 
applied criterion for measuring the degree of non-
homogeneity in the DT method is the Gini index, which is 
a function that shows the goodness of splitting and helps 
find the best splitter and pure DT. The Gini impurity 
value ranges from 0 to 1. The formula of the Gini index at 
a node D having m classes is:

Gini (D) = 1- 2

1

m

i
i

p
=
∑ .

where pi is the probability of belonging the observation 
in D to class Ci and is estimated by |Ci, D |/|D|, and m 
represents the possible classes.17

Random Forest Method
RF, or random decision forest, is an ensemble learning 
method applied in classification and regression and works 
based on constructing a mass of DTs.18 This method 
reduces overfitting by combining multiple overfitted DTs 
to form an ensemble learning algorithm. Every DT in 
this method has its decision result. By applying the result 
of voting for each tree in the forest, the sample category 
for testing is derived based on the rule of the minority 
following the majority. Finally, the category with the 
highest vote in all DTs would be the result.18

To achieve these final rules, classification trees are 
derived from bootstrap sampling.18 The RF has some 
significant characteristics, including handling missing 
data, balancing errors in the case of imbalanced data, and 
estimating the variable’s importance.18

The main tree training parameters are the number 
of generated trees (ntree), the number of predictors in 
each tree (ntry), and the number of observations in a 
leaf node (node size). The values considered for these 
parameters in this study are ntree = 500, ntry = 29, and 
node size = 5. It is reported that RF is not too sensitive 
to the value of parameters, and the default values usually 
yield appropriate output. In addition to greater accuracy 
than other supervised learning methods, it offers variable 
importance to all input variables. Variable importance 

represents each variable’s contribution to improving 
classification.18

DTs are simple to understand, providing a clear visual 
to guide decision-making. However, this simplicity has 
severe disadvantages, including overfitting, errors due to 
bias, and variance. RFs reduce the variance observed in 
decisions. Similar to RFs, gradient boosting is a set of DTs. 
The two main differences are how trees are built and how 
the results are combined. If the parameters are carefully 
tuned, gradient boosting can perform better than RFs. 
However, gradient boosting may only be a good choice if 
you have a little noise, as it can result in overfitting. They 
also tend to be harder to tune than RFs. RFs and gradient 
boosting each excel in different areas. RFs perform well 
for multi-class object detection and bioinformatics, which 
tend to have much statistical noise. Gradient boosting 
performs well when you have unbalanced data, such as 
when performing a real-time risk assessment.19

Both DTs and RFs are effective in handling collinearity 
in the input features. DTs are inherently robust to 
collinearity, while RFs enhance this robustness by 
combining multiple DTsDTRFDT.17

The results were statistically analyzed by R software 
(version 4.1) using the rpart package for the DT model 
and the RF package for RF models. In addition, a 10-
fold cross-validation was applied for the evaluation of 
our method. This significantly reduces underfitting and 
substantially reduces overfitting. K-fold cross-validation 
helps generalize the machine learning model, which 
results in better predictions on unknown data.20 In this 
validation technique, the data will be randomly separated 
into ten equal datasets, and the models (RF or DT) will 
be constructed based on the training dataset. The nine 
datasets will be used as testing data to confirm the model’s 
effectiveness. This procedure will be repeated ten times, 
reserving a different one-tenth for testing.20

The overall model discrimination and inherent validity 
of our classification models were assessed using bootstrap 
(500 replications) optimism-corrected area under the 
receiver operating characteristic curve (ROC) by applying 
pROC and boot packages. The ROC curve shows the 
clinical sensitivity and specificity relationship for every 
possible cut-off.21 It is a graphical plot that illustrates 
the diagnostic ability of a binary classifier system as its 
discrimination threshold is different. The ROC curve 
is created by plotting the true-positive rate against the 
false-positive rate at various threshold settings. The 
true-positive rate is also known as sensitivity, recall, or 
probability of detection. The false-positive rate is also 
known as the probability of false alarm rate and can be 
calculated as (1− specificity).21

The relationship between the above measurements is as 
follows:
Accuracy = (TP + TN) / (TP + FP + TN + FN)
Sensitivity = TP / (TP + FN) 
Specificity = TN / (FP + TN) 

TP, TN, FP, and FN are true positive, true negative, 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(classification_context)
https://en.wikipedia.org/wiki/Specificity_(tests)
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false positive, and false negative, respectively.21

While specificity, sensitivity, and accuracy are valuable 
metrics, they each have significant limitations to consider 
when evaluating and comparing diagnostic tests. A more 
comprehensive assessment typically requires considering 
multiple performance measures in the appropriate clinical 
context. These metrics have some limitations, including 
(1) the trade-off between sensitivity and specificity, 
(2) dependence on prevalence, (3) the difficulty in 
comparing tests directly, (4) context dependence, (5) 
oversimplification of accuracy, and (6) lack of uncertainty 
representation. As regards the first limitation, increasing 
sensitivity often leads to a decrease in specificity, and vice 
versa, and the appropriate balance depends on the clinical 
context and consequences of false results. Concerning 
dependence on prevalence, the predictive values of a test 
(positive and negative) rely on the condition’s prevalence 
in the population, and sensitivity, specificity, and 
accuracy alone do not provide enough information about 
a test’s clinical utility. Regarding the third limitation, it 
can be challenging to compare the performance metrics 
of different diagnostic tests, and values can vary based on 
the study population, setting, and measurement methods. 
In terms of context dependence, the appropriate balance 
between sensitivity, specificity, and accuracy depends on 
the clinical context and the consequences of false results. 
As regards the fifth limitation, accuracy provides a single 
summary statistic that can oversimplify the complex 
tradeoffs involved in test performance and does not 
distinguish between false positives and false negatives. 
Concerning lack of uncertainty representation, these 
metrics do not directly convey the degree of uncertainty 
or reliability associated with a test’s results.22

The AUC is generally a measure of the usefulness of 
a diagnostic test. Hence, a greater area implies a more 
accurate test. In addition, the accuracy comparison of two 
or more tests is possible by comparing each test’s AUC 
using DeLong’s test. The higher value of the AUC stands 
for better performance of the classifier method.23

Results
Tables 1 and 2 represent means ± standard deviations 
(SD)/number (%) for the anthropometrics and clinical 
data of 10 439 subjects, including 1587 DMT2 and 8852 
non-diabetics, along with the P values for comparing 
these factors. According to Table 1, the mean ± SD of 
age was 56.11 ± 7.86 for diabetics, and 23.6% of those 
with a family history of diabetes had DMT2. About 10% 
of males and 19.2% of females were DMT2 cases. There 
were significant differences (P < 0.05) between diabetic 
and non-diabetic subjects in terms of age, BMI, gender, 
FHH1, FHD1, FHD2, education level, occupational status, 
marital status, alcohol consumption, and smoking status. 
Based on the results (Table 2), all clinical parameters 
significantly differed between diabetics and non-diabetics.

Two models (DT and RF) were assessed in this study. 
The data were divided into a training dataset (70%) and 

a test dataset (30%). Both models were built on a training 
dataset (7250 records). A testing dataset (3189 records) 
was used to evaluate the models.

After applying the RF model, BMI, FHD1, cholesterol, 
TG, Cr, physical activity, age, LDL, and ALT were the most 
important and influential factors in T2DM (Figure 1). 
The extracted rules through this model are presented in 
Table 3.

DT models revealed that age, TG, BMI, SBP, FHD1, 
physical activity, LDL, Cr, and DBP were the most 
associated factors in DMT2. The classification and 
regression tree is displayed in Figure 2, and the extracted 
rules are provided in Table 3.

Table 1. Comparison of Participants’ Characteristics (Number (%) for 
Categorical and Mean ± SD for Continuous) Between Diabetics and Non-
diabetics

Characteristics
Non-diabetics Diabetics

P ValueMean ± SD/
Number (%)

Mean ± SD/
Number (%)

Age (y) 51.36 ± 8.15 56.11 ± 7.86  < 0.001

BMI (kg/m2) 25.91 ± 4.48 27.15 ± 4.14  < 0.001

Weight 69.15 ± 12.33 69.38.06 ± 12.16 0.49

Height 162.98 ± 9.31 163.28 ± 9.16 0.22

W 95.52 ± 12.10 95.83 ± 11.88 0.35

H 100.93 ± 8.37 100.87 ± 8.27 0.96

W/h 0.95 ± 0.07 0.95 ± 0.07 0.1

FHH1
Yes 4651 (82.6) 978 (17.4)

 < 0.001
No 4413 (87.7) 621 (12.3)

FHD1
Yes 2959 (76.4) 914 (23.6)

 < 0.001
No 6104 (89.9) 685 (10.1)

FHD2
Yes 1759 (79.2) 462 (20.8)

 < 0.001
No 7305 (86.5) 1137 (13.5)

Gender
Male 4016 (90) 446 (10)

 < 0.001
Female 4778 (80.8) 1134 (19.2)

Education 
level

Low 7419 (83.8) 1432 (16.2)

 < 0.001Moderate 865 (90) 96 (10)

High 510 (90.7) 52 (9.3)

Occupational 
status

Employed 4760 (90.3) 509 (9.7)
 < 0.001

Unemployed 4034 (79) 1071 (21)

Marital status

Single 160 (93) 12 (7)

 < 0.001

Married 7921 (86) 1292 (14)

Widow 623 (69.8) 296 (30.2)

Divorced 56 (96.6) 2 (3.4)

Temporary 
Marriage

34 (87.2) 5 (12.8)

Alcohol 
consumption

Yes 290 (93.9) 19 (6.1)
 < 0.001

No 8504 (84.5) 1561 (15.5)

Smoking 
status

Yes 2312 (91.1) 227 (8.9)
 < 0.001

No 6482 (82.7) 1353 (17.3)

Note. *Bold figures represent a statistically significant association (P < 0.05). 
Independent sample t tests and chi-square tests were used to compare 
quantitative and qualitative factors between groups. SD: Standard deviation; 
BMI: Body mass index; FHH1: First-degree family history of hypertension; 
FHD1: First-degree family history of T2DM; FHD2: Second-degree family 
history of T2DM.

https://iraniantranslate.com/dictionary/english-persian-translation/temporary marriage/
https://iraniantranslate.com/dictionary/english-persian-translation/temporary marriage/
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Sensitivity, specificity, accuracy, and the 95% confidence 
intervals for the DT and RF models are presented in 
Table 4. In addition, AUC is reported to compare the two 
models. The models were evaluated using a confusion 
matrix on a test dataset (Table 5). The RF model had an 
accuracy of 86.96%. Of the 2657 non-diabetic individuals 
in testing datasets, 2439 were correctly classified using 
the RF, with a specificity of 91.8%. For the 532 diabetic 
patients in the testing dataset, the RF could correctly 
classify 334 individuals, with a sensitivity of 62.78%.

The DT model had an accuracy of 81.84%. Of the 
2657 non-diabetic individuals in test datasets, 2300 were 
classified correctly using the DT model, with a specificity 
of 86.56%. For the 532 diabetic patients in the testing 
dataset, the DT model could correctly categorize 310 
individuals, with a sensitivity of 58.27%.

Discussion
T2DM is a problem that usually cannot be diagnosed 
before its complications24; thus, finding and evaluating 
prediction models based on risk factors are important 
issues.25 In our study, 27 variables were significantly 
associated with diabetes incidence in univariate analysis. 
DT and RF models were applied to investigate factors 
associated with T2DM. These methods are among 
the machine learning approaches that are preferred 
to the classical methods for many reasons, such as the 
ability to handle nonlinear associations, multilevel 
interactions between variables, simple interpretation, 

and the generation of rules.26 Additionally, they are more 
applicable in public health program settings.27 DTs are 
practically effortless to use models28 and robust statistical 
methods for classification and prediction that have 
many applications in medical studies.29 In RF modeling, 
numerous classification trees are assembled by selecting 
random training datasets and random sets of variables. 
Finally, to provide a prediction for each observation, the 
result of each tree is combined. Because of the modeling 
process in an RF, it is usually more accurate than a single 
DT model.28

The findings of this study highlight critical risk factors 
associated with T2DM through the application of DT and 
RF modeling techniques. Both models identified a range of 
factors with notable overlaps, providing a comprehensive 
understanding of the determinants of T2DM.

The DT and RF models identified several common 
factors, including TG, physical activity, BMI, and LDL 
cholesterol. The significance of these factors aligns with 
existing literature, which emphasizes their role in the 
pathophysiology of T2DM. For instance, elevated TG 
and LDL levels are associated with insulin resistance and 
metabolic syndrome, which are vital contributors to the 
development of diabetes.30,31 Physical activity is also a 
well-established protective factor, as it enhances insulin 
sensitivity and aids in weight management.32 While 
there was an overlap, the distinct outputs of each model 
provided further insights. The DT model highlighted 
age, SBP, FHD1, Cr, and DBP as significant factors. 
Conversely, the RF model emphasized cholesterol and 
ALT levels. This divergence may reflect the strengths of 
each modeling approach—DTs offer clear visualizations 
of decision paths. Simultaneously, RFs can capture 
complex interactions and nonlinear relationships 
among variables.33 Numerous previous studies support 
the association between various risk factors and the 
development of diabetes. For example, in a study exploring 
the association between liver enzymes and the risk of 
T2DM, serum ALT concentrations were independently 

Table 2. Comparison of Mean ± SD for Clinical Parameters Between Diabetics 
and Non-diabetics

Characteristics Non-diabetics Diabetics P Value*

SBP (mm Hg) 114.17 ± 17.50 119.74 ± 19.09  < 0.001

DBP (mm Hg) 72.01 ± 10.32 73.34 ± 10.41  < 0.001

Cholesterol (mg/dL) 187.85 ± 41.22 181.94 ± 43.98  < 0.001

HDL-cholesterol (mg/dL) 47.98 ± 12.61 47.08 ± 12.62 0.01

LDL cholesterol (mg/dL) 114.75 ± 34.75 104.59 ± 36.75  < 0.001

TG (mg/dL) 126.39 ± 77.03 152.36 ± 93.76  < 0.001

FBS 91.83 ± 16.82 142.88 ± 61.19  < 0.001

SG 1.02 ± 0.006 1.02 ± 0.006 0.005

BUN 13.93 ± 3.98 14.52 ± 4.89  < 0.001

Cr 0.98 ± 0.23 0.99 ± 0.23  < 0.001

SGOT 22.37 ± 9.34 21.45 ± 11.02  < 0.001

SGPT 24.91 ± 15.34 26.67 ± 18.79  < 0.001

ALP 208.83 ± 65.75 223.19 ± 71.96  < 0.001

GGT (IU/L) 24.85 ± 21.07 30.52 ± 28.01  < 0.001

Energy 2498.46 ± 820.60 2151.93 ± 675.19  < 0.001

Physical activity 38.80 ± 6.30 36.87 ± 4.94  < 0.001

Note. *Bold figures represent statistically significant association (P < 0.05). 
Independent sample t test was used for comparison. SBP: Systolic blood 
pressure; DBP: Diastolic blood pressure; HDL: High-density lipoprotein; 
LDL: Low-density lipoprotein; TG: Triglyceride; FBS: Fasting blood sugar; 
SG: Specific gravity; BUN: Blood urea nitrogen; Cr: Creatinine; SGOT: 
Serum glutamic-oxaloacetic transaminase; SGPT: Serum glutamate 
pyruvate transaminase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl 
transferase.

Figure 1. The Importance of Input Variables in the Random Forest Model
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associated with T2DM in both genders.34 According to 
the findings of Moon et al, Cr was considered a risk factor 
for T2DM.35 BMI and age emerged as the most critical 
risk factors in RF and DT models, respectively, which is 
consistent with the findings of other studies identifying 
obesity and older age as primary predictors of T2DM.36,37 
As populations continue to age and obesity rates rise 
globally, understanding the implications of these factors 
is crucial for public health strategies aimed at diabetes 
prevention. The results of this study conform to those of 
previous research that utilized DT modeling to explore 
diabetes risk factors. Some studies have consistently 
reported BMI, age, and family history as significant 
predictors of T2DM.38,39 

Sensitivity and specificity values were used to compare 
the two mentioned models. The sensitivity and specificity 
are significant indices that are used for model validity.40 
The two values were higher for the RF model, which is 
consistent with the results of other studies.41,42 AUC is an 
even better performance criterion for predictive evaluation 

than accuracy.43 In our study, the AUC of the RF model 
for testing the dataset was significantly higher than that 
of the DT, which matches the findings of another study.5

Two essential strengths of our study were modeling a 
large sample with a relatively large number of variables 
and rendering a new vision in using data mining methods 
for exploring potential associated risk factors of T2DM.

While we created an accurate predictive model for 
T2DM using data mining techniques and identified 
potential risk factors, it is noted that not all criteria for 
predictive models are typically met. Critical criteria for 
predictive models involve incorporating all clinically 
relevant factors, the logical coherence for clinicians who 
will use it, and the necessity for the model to be tested 
on independent samples.44 Furthermore, limiting our 
sample to a single city in Iran poses another constraint 
on our study. In other words, our model would be more 
representative if the data were collected from various 
regions across the country.

Identifying these risk factors carries significant 

Table 3. The Extracted Decision Rules Obtained From RF and DT Models

Model

Class

The Person With Diabetes 
(Probability)

The Person Without Diabetes
(Probability)

RF Model

r1: BMI > 23.5 & FHD1 = no & cholesterol < 253 - 181.236 (77%)

r2 BMI > 23.5 & FHD1 = no & cholesterol > 253 & TG < 199 - 50.80 (62.5%)

r3: BMI > 23.5 & FHD1 = yes & cholesterol < 253 & TG < 199 386.750 (51.5%) -

r4: BMI > 23.5 & FHD1 = yes & cholesterol > 253 & TG > 199 119.199 (60%) -

R5: BMI < 23.5 & FHD1 = no & Cr < 1.7 & TG < 199 - 589.755 (78%)

R6: BMI < 23.5 & FHD1 = yes & physical activity < 30 & age > 45 20.38 (53%) -

R7: BMI < 23.5 & FHD1 = yes & TG > 220 & physical activity > 30 & age < 45 - 37.47 (79%)

R8: BMI < 23.5 & physical activity < 30 & age > 45 & LDL < 110 - 27.32  (0.84%)

R9: BMI < 23.5 & physical activity < 30 & age > 45 & LDL > 110 & FHD1 = 1 7.11 (0.64%) -

R10: BMI < 23.5 & physical activity < 30 & age > 55 & Cr > 1.7 & ALT > 37 10.14 (0.71%)

R11: BMI < 23.5 & physical activity < 30 & age > 55 & Cr < 1.7 & ALT > 37 - 9.17 (53%)

R12: BMI < 23.5 & physical activity > 30 & age < 55 & ALT < 37 FHD1 = no - 8.9 (88.8%)

R13: BMI < 23.5 & physical activity > 30 & age < 55 & ALT < 37 FHD1 = yes - 8.10 (80%)

DT model

d1: Age < 49 & BMI < 24.8 - 3604.3921 (92%)

d2: Age < 49 & BMI > 24.8 & physical activity > 33 - 53.243 (22%)

d3: Age < 49 & BMI > 24.8 & physical activity < 33 & Cr < 1.3 - 89.198 (45%)

d4: Age < 49 & BMI > 24.8 & physical activity < 33 & Cr > 1.3 & FHD = yes 45.79 (57%) -

d5: Age < 49 & BMI > 24.8 & physical activity < 33 & Cr > 1.3 & FHD = no 100.198 (51%) -

d6: Age > 49 & TG > 173 & SBS > 12 & FHD = yes & DBP > 83 9.14 (65%) -

d7: Age > 49 & TG > 173 & SBS > 12 & FHD = yes & DBP < 83 9.17 (53%) -

d8: Age > 49 & TG > 173 & SBS > 12 & FHD = no - 56.149(38%)

d9: Age > 49 & TG > 173 & SBS < 12 - 34.93 (37%)

d9: Age > 49 & TG < 173 & FHD1 = yes & LDL > 110 12.21 (57%) -

d10: Age > 49 & TG < 173 & FHD1 = yes & LDL < 110 - 31.85 (36%)

d11: Age > 49 & TG < 173 & FHD1 = no - 9.36 (23%)

Note. T2DM: Type 2 diabetes mellitus; RF: Random forest; DT: Decision tree; BMI: Body mass index; FHD1: First-degree family history of T2DM; FHD2: Second-
degree family history of T2DM; TG: Triglyceride; LDL: Low-density lipoproteins; ALT: Alanine transaminase; Cr: Creatinine.

https://www.nature.com/articles/nrdp201519
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implications for clinical practice and public health 
initiatives. Targeted interventions focusing on lifestyle 
modifications, such as increased physical activity and 
weight management, could help mitigate the risk of 
T2DM. Furthermore, public health campaigns to raise 
awareness about maintaining healthy cholesterol and TG 
levels may be beneficial.

Future research should continue to explore the 
interactions between these risk factors and their 
cumulative effects on diabetes risk. Longitudinal studies 
could provide deeper insights into how these factors 
influence T2DM development.

Conclusion
In this study, some models were proposed for determining 
the risk factors of T2DM using two data mining methods 

that did not need laboratory tests. The application of DT 
and RF models has elucidated vital risk factors associated 
with T2DM, emphasizing the importance of BMI, age, 
TG, physical activity, and LDL. The findings of this study, 
in conjunction with those from related research, can be 
utilized to improve the diagnostic processes for T2DM 
and mitigate the complications arising from delayed 
diagnosis. This integration of knowledge can significantly 
enhance clinical practices and patient outcomes in 
managing T2DM.
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